Differentiation in non-archimedean valued fields
نویسندگان
چکیده
منابع مشابه
An analogue of Hilbert’s tenth problem for fields of meromorphic functions over non-Archimedean valued fields
Let K be a complete and algebraically closed valued field of characteristic 0. We prove that the set of rational integers is positive existentially definable in the field M of meromorphic functions on K in the language Lz of rings augmented by a constant symbol for the independent variable z and by a symbol for the unary relation “the function x takes the value 0 at 0”. Consequently, we prove t...
متن کاملAn analogue of Hilbert’s 10th problem for fields of meromorphic functions over non-Archimedean valued fields
Let K be a complete and algebraically closed valued field of characteristic 0. We prove that the set of rational integers is positive existentially definable in the field M of meromorphic functions on K in the language L z of rings augmented by a constant symbol for the independent variable z and by a symbol for the unary relation ‘‘the function x takes the value 0 at 0’’. Consequently, we prov...
متن کاملAndrew Schumann NON - ARCHIMEDEAN VALUED PREDICATE LOGIC
In this paper I propose the non-Archimedean multiple-validity. Further, I build an infinite-order predicate logical language in that predicates of various order are considered as fuzzy relations. Such a language can have non-Archimedean valued semantics. For instance, infinite-order predicates can have an interpretation in the set [0, 1] of hyperreal (hyperrational) numbers. Notice that there e...
متن کاملGlobal Newton Iteration over Archimedean and non-Archimedean Fields
In this paper, we study iterative methods on the coefficients of the rational univariate representation (RUR) of a given algebraic set, called global Newton iteration. We compare two natural approaches to define locally quadratically convergent iterations: the first one involves Newton iteration applied to the approximate roots individually and then interpolation to find the RUR of these approx...
متن کاملOne-dimensional Optimization on Non-archimedean Fields
One dimensional optimization on non-Archimedean fields is presented. We derive first and second order necessary and sufficient optimality conditions. For first order optimization, these conditions are similar to the corresponding real ones; but this is not the case for higher order optimization. This is due to the total disconnectedness of the given non-Archimedean field in the order topology, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1970
ISSN: 1385-7258
DOI: 10.1016/s1385-7258(70)80006-3